If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2-8t-4=0
a = 4; b = -8; c = -4;
Δ = b2-4ac
Δ = -82-4·4·(-4)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{2}}{2*4}=\frac{8-8\sqrt{2}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{2}}{2*4}=\frac{8+8\sqrt{2}}{8} $
| 75+3n=7+3n | | 1.7=k+1.4 | | ((2a+3)/4)+((a-1)/3))=2 | | x+3/6=4x/3=4 | | I^2+a=1 | | 1,8x+32=100 | | 2a+18a=36 | | 3(2m-3)+5=20 | | 11x−2 = −8x+8 | | 11x−2=−8x+8 | | B^2+13+14b=0 | | 30+4x+x=125 | | 6a+2=4a+12 | | 6a+2 = 4a+12 | | 7b+13=11+3b | | 7z+15=6+4z | | x+x-7=41 | | 3x+(4x17)=7 | | 2x+7/3=4x+12/5 | | x2+9x-8=2x | | 4x–5=45 | | 2x(7x+6)+3x=63 | | 7-3a=4a-35 | | 4÷2x=64× | | 8m-20+m^2=0 | | 3x+12=(x+12) | | 2^2x+3=1 | | 5(2p+3)–3(2p–3)=4 | | 5w-4=3+2 | | 7w+2=23 | | 3x^2+6x-100=0 | | 6c^2-5c+1=0 |